Inactivation of glyceraldehyde-3-phosphate dehydrogenase by fumarate in diabetes: formation of S-(2-succinyl)cysteine, a novel chemical modification of protein and possible biomarker of mitochondrial stress.
نویسندگان
چکیده
OBJECTIVES (2-succinyl)cysteine (2SC) is formed by a Michael addition reaction of the Krebs cycle intermediate, fumarate, with cysteine residues in protein. We investigated the role of fumarate in chemical modification and inhibition of the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in vitro and in tissues of diabetic rats. RESEARCH DESIGN AND METHODS GAPDH was incubated with fumarate in PBS to assess effects of fumarate on enzyme activity in vitro. Sites of 2SC formation were determined by analysis of tryptic peptides by high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. 2SC and fumarate in gastrocnemius muscle of control and streptozotocin-induced diabetic rats were measured by liquid chromatography/tandem mass spectrometry and by gas chromatography/mass spectrometry, respectively. GAPDH was isolated from muscle by immunoprecipitation, and sites of modification of GAPDH were determined by mass spectrometry analysis. RESULTS 2SC was found, both in vitro and in vivo, about equally at active-site Cys-149 and nucleophilic Cys-244. Inactivation of GAPDH by fumarate in vitro correlated with formation of 2SC. In diabetic compared with control rats, fumarate and 2SC concentration increased approximately fivefold, accompanied by an approximately 25% decrease in GAPDH specific activity. The fractional modification of GAPDH by 2SC was significantly increased in diabetic versus control animals, consistent with the decreased specific activity of GAPDH in muscle of diabetic animals. CONCLUSIONS Fumarate contributes to inactivation of GAPDH in diabetes. 2SC may be a useful biomarker of mitochondrial stress in diabetes. Modification of GAPDH and other enzymes and proteins by fumarate may contribute to the metabolic changes underlying the development of diabetes complications.
منابع مشابه
The Succinated Proteome of FH-Mutant Tumours
Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH) predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate to high levels, which may act as an oncometabolite through various, but not necessarily mutually exclusive, mechanisms. One such mechanism, succination, is an...
متن کاملTissue distribution of S-(2-succino)cysteine (2SC), a biomarker of mitochondrial stress in obesity and diabetes.
S-(2-succino)cysteine (2SC) is a chemical modification of proteins produced by reaction of fumarate with thiol groups in protein, a process known as succination. We propose to use the name S-(2-succino)cysteine (instead of S-(2-succinyl)cysteine) from this point on. This is to distinguish protein succination (in which fumarate forms a thioether linkage with cysteine residues) from succinylation...
متن کاملReversible modification of pig heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate.
1. Pig heart mitochondrial malate dehydrogenase incubated with pyridoxal 5'-phosphate at pH 8.0 and 25 degrees C gradually loses activity. Such inactivation can be largely reversed by dialysis or by addition of L-lysine or L-cysteine, and can be made permanent by NaBH4 reduction. 2. Modification of malate dehydrogenase with pyridoxal 5'-phosphate at 35 degrees C involves two phases, an initial ...
متن کاملMitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity.
2SC [S-(2-succino)-cysteine] is a chemical modification formed by a Michael addition reaction of fumarate with cysteine residues in proteins. Formation of 2SC, termed 'succination' of proteins, increases in adipocytes grown in high-glucose medium and in adipose tissues of Type 2 diabetic mice. However, the metabolic mechanisms leading to increased fumarate and succination of protein in the adip...
متن کاملEvidence for the Essential Arginine and Histidine Residues in Catalytic Activity of Glucose 6-Phosphate Dehydrogenase from Streptomyces aureofaciens
Glucose 6-phosphate dehydrogenase (G6PD) was purified from Streptomyces aureofaciens and inactivated with butanedione and diethylpyrocarbonate. Incubation of the enzyme with butanedione resulted in a rapid activity loss (80%) within 5 min, followed by a slow phase using a molar ratio to enzyme concentration of 100. Fluorescence studies showed a conformational change in the butanedione-modified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2008